Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size
نویسندگان
چکیده
Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8-9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level.
منابع مشابه
Microwave induced combustion Synthesis of Nano- Codoped Ceria and their electrical properties
In this work, Ce0.75Gd0.1Ca0.15O1.8 nanopowders are successfully synthesized by a Glycine-nitrate combustionprocess under the microwave irradiation. Then calcination was carried out at 700 °C. Calcined powdersidentified by room temperature X-ray diffraction were single phase and had a crystallite size between 16 to 24nm (based on Schererr formula). Scanning electron microscopy (SEM) was employe...
متن کاملEffect of Dopant on Improving Structural, Density and Functional Properties of Ceria Based SOFC Electrolyte
In the present work, Gadolinium Doped ceria (GDC) based solid electrolyte was successfully synthesized through wet chemical method to operate at intermediate temperature (500–700°C) for SOFCs. DSC study revealed the formation of GDC phase at 900°C during calcination. The crystal structure of GDC was identified as cubic fluorite phase and the crystallite size was found to be around 23 nm....
متن کاملLa0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for Intermediate Temperature Solid Oxide Fuel Cells: A comparative study
In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....
متن کاملPhotocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO2/TiO2
Both N-doped and undoped thin films of 3SnO2/TiO2 composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600 °C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was conf...
متن کاملDiethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2 )Catalyst
Nano-crystalline particles of CeO2 have been synthesized by a low temperature chemical precipitation method. The precursor materials used in this research were Ce(NO3)3.6H2O, NaOH and diethylene glycol as surfactant. X-ray powder diffraction results showed that face centered cubic CeO2 nanoparticles with crystalline size in nanometer scale were formed. Scanning electron microscopy measurement s...
متن کامل